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Abstract: In this paper, we present a comprehensive study on the spectral prop-
erties of the signless Laplacian matrix of the maximal graph. Specifically, we
characterize the spectral radius of the signless Laplacian matrix of the maximal
graph M(Γ(Zn)). Moreover, we study the smallest signless Laplacian eigenvalue of
the maximal graph and introduce an interaction with the algebraic connectivity of
M(Γ(Zn)) for some definite values of n. Finally, we derive an explicit formula for
the Wiener index in terms of signless Laplacian eigenvalues of the graph.
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1. Introduction
In this paper, we consider only undirected simple graph G(V,E), with vertex

set V and edge set E and we denote two vertices vi and vj are adjacent by vi ∼ vj.
Adjacency matrix of a graph G is defined as A(G) = (aij)n×n, aij = 1 and 0 accord-
ing as vi is adjacent to vj or not. The difference between diagonal matrix D(G),
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with diagonal entries is the degree of the corresponding vertices, and the adjacency
matrix A(G) is said to be Laplacian matrix L(G), therefore L(G) = D(G)−A(G)
and the signless Laplacian matrix Q(G) is defined as D(G)+A(G). The Laplacian
matrix, a crucial matrix representation of a graph, plays a vital role in under-
standing various properties of the graph. Recently, the signless Laplacian matrix
has gained significant attention due to its unique characteristics and applications.
Some of them are seen in [7, 8]. The signless Laplacian energy of a graph was
introduced by Pirzada et al. [9]. They obtained the upper bounds for the signless
Laplacian energy of a graph and characterized the extremal cases. Pirzada et al.
[10] determined the signless Laplacian eigenvalues of the zero divisor graph Γ(Zn)
for n = pM1qM2 , where p < q are primes andM1,M2 are positive integers. Gaur and
Sharma [5] introduced the maximal graph M(Γ(R)), corresponding to the non-unit
elements of R. It is a graph with vertices being the non-unit elements of R, where
two distinct vertices a and b are adjacent if and only if there is a maximal ideal
of R containing both. In this paper, we emphasize on the significant of spectral
characteristics of the signless Laplacian matrix of maximal graph M(Γ(Zn)), of Zn,
the ring of integer modulo n.

The signless Laplacian spectrum ofG is the set of eigenvalues (with multiplicity)
of the signless Laplacian matrix of G. We denote the distinct signless Laplacian
eigenvalues λ1, λ2, . . . , λk of G with multiplicity m1,m2, . . . ,mk by

σQ(G) =

(
λ1 λ2 . . . λk

m1 m2 . . . mk

)
.

The signless Laplacian eigenvalues of the complete graph Kn is given by,

σQ(Kn) =

(
2n− 2 n− 2

1 n− 1

)
.

The Laplacian spectral radius and the signless Laplacian spectral radius of G are
denoted by λ(G) and λQ(G), respectively. The algebraic connectivity of a graph G
is defined as the second smallest Laplacian eigenvalue of G and is denoted by µ(G).
Fiedler [4] has proved that λ(G) = n−µ(G), where G is the complement of graph G.
The vertex connectivity κ(G), is defined as the minimum number of vertices of G,
which need to be removed from V (G), so that the induced subgraph of G obtained
after removing the vertices is disconnected or has only one vertex. Chattopadhya
et al. [3] have introduced some particular values of n for which the algebraic
connectivity µ(G), of the zero divisor graph coincides with the corresponding vertex
connectivity κ(G). The smallest signless Laplacian eigenvalue of G is denoted by
µQ(G). In [11], Schwenk defined the G-generalised join graph or the generalised
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composition graph, which plays a significant role to find the signless Laplacian
spectrum and normalized Laplacian spectrum of Z∗(Γ(Zn)) for different values of
n. For a graph G with the vertex set V (G) = {v1, v2 . . . vk}, the G- generalized
join graph G[H1, H2 . . . Hk] of k pairwise disjoint graphs H1, H2 . . . Hk is the graph
formed by replacing each vertex vi of G by the graph Hi and then joining each
vertex of Hj whenever vi ∼ vj in G.

In this paper, we study the signless Laplacian spectrum of maximal graph
M(Γ(Zn)), for some particular values of n and prove that M(Γ(Zn)) is a sign-
less Laplacian integral if and only if λQ(M(Γ(Zn))) is an integer. Also, we char-
acterize some values of n, for which the smallest signless Laplacian eigenvalue
µQ(M(Γ(Zn))) coincides with algebraic connectivity and vertex connectivity. In

section-2, we prove that µ(M(Γ(Zn))) = n − λQ(M(Γ(Zn))) if and only if n is
a product of two distinct prime numbers. A distance - based topological index,
Wiener index W (G) of G is defined as the sum of the distances of all the distinct
pair of vertices of G. In section-3, we introduce the significance of the signless
Laplacian spectrum on the Wiener index of maximal graph M(Γ(Zn)).

2. Main Result

A graph G is said to be a signless Laplacian integral if all signless Laplacian
eigenvalues are integers. In Theorem 2.4, we recognize the significance of signless
Laplacian spectral radius in signless Laplacian integral of M(Γ(Zn)). We shall
rapidly use the following Lemma 2.1 and Lemma 2.2 from [1].

Lemma 2.1. Every elements of Adi are adjacent to all elements of Adj in M(Γ(Zn))
if and only if di and dj both are contained in the same maximal ideal of Zn.

From [13], we have, |Adi | = ϕ
(

n
di

)
.

Lemma 2.2. For every positive integer n,

M (Γ(Zn)) = δn

[
Kϕ( n

d1
), Kϕ( n

d2
), . . . , Kϕ( n

dk
)

]
,

where δn is a graph with vertices being the proper divisors of n, two vertices x and
y are adjacent in δn if and only if x and y both are contained in the same maximal
ideal of Zn.

The following Theorem 2.3 is proved in [12].

Theorem 2.3. Let G be a graph with vertex set {v1, v2, . . . , vk} and let H1, . . . Hk

be k−pairwise disjoint r1- regular,. . ., rk- regular graphs with m1, . . .mk vertices,
respectively. Then the signless Laplacian spectrum of G [H1, H2, . . . Hk] is given by
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σQ (G[H1, H2, . . . Hk]) =

(
k⋃

j=1

(Mj + (σQ(Hj) \ {2rj}))

)⋃
σ(Q(G)), (1)

where Q(G) = (qij)k×k with

qij =


2ri +Mi, i = j
√
mimj, vi ∼ vj

0, otherwise

, (2)

and

Mj =

{∑
vi∼vj

mi, if NG(vj) ̸= ϕ,

0, otherwise
.

In Equation (1), σQ(Hj) \ {2rj} means that one copy of eigenvalue 2rj is removed
from the multi-set σQ(Hj) and Mj+σQ(Hj)\{2rj} means that Mj is added to each
element of σQ(Hj) \ {2rj}.
Theorem 2.4. For n = pq, pα, pαqβ where p and q are distinct prime numbers
and α and β are two positive integers with α < β, the maximal graph M(Γ(Zn)) is
a signless Laplacian integral if and only if its spectral radius, λQ(M(Γ(Zn))) is an
integer.
Proof. By using Lemma 2.2 M(Γ(Zpq)) = Kϕ(q) ∪ Kϕ(p). Therefore, the signless
Laplacian characteristic polynomial of M(Γ(Zpq)) is given by

(x− (2ϕ(q)− 2))(x− (2ϕ(p)− 2))(x− (ϕ(q)− 2))ϕ(q)−1(x− (ϕ(p)− 2))ϕ(p)−1.

Thus

σQ(G) =

(
2ϕ(q)− 2 2ϕ(p)− 2 ϕ(q)− 2 ϕ(p)− 2

1 1 ϕ(q)− 1 ϕ(p)− 1

)
.

Again for n = pα, M(Γ(Zpα)) = Kpα−1−1. Hence, the result is obvious for n = pq
and pα.

We assume n = pαqβ. Followed from the proof of Lemma 2.7, we have

M(Γ(Zpαqβ)) = Km ∨ [Km1 ∪Km2 ] ,

withm =
∑α

i=1

∑β
j=1 ϕ(p

α−iqβ−j)−1, m1 =
∑α

i=1 ϕ(p
α−iqβ), m2 =

∑β
j=1 ϕ(p

αqβ−j)
and m < m1 < m2. By direct calculation, using Theorem 2.3 from [12] the signless
Laplacian characteristic polynomial of M(Γ(Zpαqβ)) is given by

(x−(m+m1−2))m1−1(x−(m+m2−2))m2−1(x−(m+m1+m2−2))m(x2−bx+c), (3)
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where b = 3m+2m1+2m2−4 and c = 2m2+2mm1+2mm2+4m1m2−6m−4m1−
4m2 + 4. From equation (1), it is clear that M(Γ(Zpαqβ)) is a signless Laplacian
integral if and only if the roots of x2 − bx+ c are integers.

Note that if λ1 and λ2 are two roots of x2 − bx+ c with λ1 ≥ λ2, λ1 =
b+

√
b2−4c
2

and m + m1 + m2 − 2 < b. Therefore, λQ(M(Γ(Zpαqβ))) is the largest root of
x2 − bx+ c.
Suppose that λQ(M(Γ(Zpαqβ))) is an integer. Thus, all the roots of x2 − bx+ c are
integers. Hence, we get the required result.

By using following Lemma 2.5, we characterize the value of n for which vertex
connectivity is equal to the smallest signless Laplacian eigenvalue of M(Γ(Zn)) in
Theorem 2.6.

Lemma 2.5. In M(Γ(Zpαqβ)), µQ(M(Γ(Zpαqβ))) = m+m1 − 2.
Proof. From Equation (3), we have

σQ(M(Γ(Zpαqβ))) =

(
m+m1 − 2 m+m2 − 2 m+m1 +m2 − 2 λ1 λ2

m1 − 1 m2 − 1 m 1 1

)
.

It is clear that m + m1 − 2 < m + m2 − 2 < m + m1 + m2 − 2. Claim that
m+m1 − 2 < λ2 < λ1. Here λ1 =

b−
√
b2−4c
2

.
Now

(b−
√
b2 − 4c)− 2(m+m1 − 2) = (3m+ 2m1 + 2m2 − 4)−√

χ− 2(m+m1 − 2)

= m+ 2m2 −
√
χ,

where χ = m2 + 4m2
1 + 4m2

2 + 4mm1 + 4mm2 − 8m1m2.
Again,

(m+ 2m2)
2 − χ = 8m1m2 − 4m2

1 − 4mm1

= 4pα−1qβ−1(p− 1)[2q − p− 2] + 4(p− 1) > 0,

Therefore,
√
χ < m + 2m2 and so (b −

√
b2 − 4c) > 2(m + m1 − 2). Hence,

µQ(M(Γ(Zpαqβ))) = m+m1 − 2.

Theorem 2.6. If n = 4q, q is a prime number, then κ(M(Γ(Zn))) = µQ(M(Γ(Zn))).
Proof. Here M(Γ(Zn)) = K1∨ [K2∪K2(q−1)], then κ(M(Γ(Zn))) = 1. From Equa-
tion (1),

σQ(M(Γ(Zn))) =

(
1 2q − 3 2q − 1 λ1 λ2

1 2q − 3 1 1 1

)
.

It is clear that λ1 > λ2 > 1. Thus, µQ(M(Γ(Zn))) = 1 and so κ(M(Γ(Zn))) =
µQ(M(Γ(Zn))).
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Suppose n ̸= 4q. Therefore, M(Γ(Zn)) = Km ∨ [Km1 ∪Km2 ] with m1 > 2 and
so m+m1 − 2 > m. It is clear for m < m1 < m2, κ(M(Γ(Zn))) = m. Hence, from
Lemma 2.5, κ(M(Γ(Zn))) < µQ(M(Γ(Zn))).

The following Lemma 2.7 was introduced in [1], which determines the Laplacian
spectrum of M(Γ(Zn)) for some particular values of n.

Lemma 2.7. Let n = pαqβ where p and q are distinct prime numbers, and α and
β are two positive integers with α < β. The Laplacian spectrum of M(Γ(Zn)) is
given by

σL(M(Γ(Zn))) =

(
0 m m+m1 m+m2 m+m1 +m2

1 1 m1 − 1 m2 − 1 m

)
.

In the next Lemma 2.8, we determine the value of n for which the smallest
signless Laplacian eigenvalue of M(Γ(Zn)) and its algebraic connectivity are equal.

Lemma 2.8. If n = 4q, q is a prime number, then µ(M(Γ(Zn))) = µQ(M(Γ(Zn))).
Proof. Here m = 1,m1 = 2 and m2 = 2(q − 1). By using Lemma 2.7, we have

σL(M(Γ(Z4q))) =

(
0 1 3 2q − 1 2q + 1
1 1 1 2q − 3 1

)
.

Therefore the algebraic connectivity of M(Γ(Z4q)), µ(M(Γ(Z4q))) = 1. Thus, the
result follows from Lemma 2.5.

The following result, Theorem 2.9, characterizes the values of n for which the
complement graph of M(Γ(Zn)) is complete bipartite and join of two graphs. By
using Theorem 2.9, we provide an explicit formula to find the algebraic connectivity
of M(Γ(Zn)) for some particular values of n in Theorem 2.11.

Theorem 2.9. M(Γ(Zn)) is complete bipartite graph Km1,m2 if and only if n is a
product of two distinct primes with m1 = ϕ(q) and m2 = ϕ(p).
Proof. For n = pq, M(Γ(Zpq)) = Kϕ(q) ∪Kϕ(p). Considering the partition U and
V are equal to V (Kϕ(q)) and V (Kϕ(p)) respectively. Therefore, from Lemma 2.1,

it follows that M(Γ(Zn)) is a complete bipartite if n is a product of two distinct
primes.

Conversely, suppose that n = pr11 pr22 . . . prkk , where p1, p2, . . . , pk are distinct
primes and r1, r2, . . . , rk, k are positive integers. Assume that k = 2 with at least
one of r1 and r2 is greater than 1. Therefore, by Lemma 2.1, p1p2 is adjacent to all
other vertices in M(Γ(Zn)) and so p1p2 is an isolated vertex in M(Γ(Zn)). Hence
M(Γ(Zn)) is disconnected.
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For k ≥ 3, follows from Lemma 2.1, p1, p2, . . . , pk are mutually adjacent in
M(Γ(Zn)). Thus, it contains at least one odd cycle. This implies that M(Γ(Zn))
cannot be bipartite.

For k = 1, M(Γ(Zn)) = Kpr1−1−1. Thus, it is totally disconnected. Hence

M(Γ(Zn)) is complete bipartite graph if and only if n is a product of two distinct
primes.

Lemma 2.10. (Fiedler [4]) If G is a graph on n vertices, then λ(G) = n − µ(G)
if and only if G is disconnected if and only if G is the join of two graphs.

From the above Theorem 2.9, it directly implies that µ(G) = n − λ(G) if and
only if G is disconnected if and only if G is the join of two graphs.

Theorem 2.11. µ(M(Γ(Zn))) = n − λQ(M(Γ(Zn))) if and only if n is a product
of two distinct primes.
Proof. Follows from Theorem 2.9 M(Γ(Zn)) is the join of two graphs if and
only if n is a product of two distinct primes. We have M(Γ(Zpq)) = Kϕ(p),ϕ(q) =

Kϕ(p) ∨Kϕ(q). Therefore, by using Lemma 2.10, µ(M(Γ(Zn))) = n− λ(M(Γ(Zn)))
if and only if n is a product of two distinct primes. Note that the characteristic
polynomial of L(G) and Q(G) are same if and only if G is bipartite. Thus, for
n = pq, λQ(M(Γ(Zn))) = λ(M(Γ(Zn))). Hence, µ(M(Γ(Zn))) = n−λQ(M(Γ(Zn)))
if and only if n is a product of two distinct primes.

3. Signless Laplacian spectrum and Wiener index of the maximal graph
In [2], Bora and Rajkhowa explained the significances of Laplacian spectrum on

the Wiener index of extension of zero divisor graph. In this section, we introduce an
interaction of the Wiener index with the signless Laplacian eigenvalues ofM(Γ(Zn))
for some particular values of n. We state Lemma 3.1 and Lemma 3.2 from [1].

Lemma 3.1. For any two vertices x and y, in M(Γ(Zn)), d(x, y) is given by

d(x, y) =

{
1; if x is adjacent to y,

2; if x is not adjacent to y
.

From Lemma 2.2, observe that for n = pq, d(x, y) = ∞ if x is not adjacent to
y. As a result, the graph is disconnected.

Lemma 3.2. The following holds for the diameter of M(Γ(Zn)):

(i) diam(M(Γ(Zn))) = 1 if and only if n = pt.

(ii) diam(M(Γ(Zn))) = 2 if and only if n = pα1
1 pα2

2 . . . pαk
k , with k ≥ 2 and pi’s

are distinct primes and αi’s are positive integers for i = 1, 2, . . . , k.
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Theorem 3.3. The Wiener index of M(Γ(Zn)) = 1
2

∑m
i=1 λi, λi are the signless

Laplacian eigenvalues of M(Γ(Zn)) if and only if n is a product of two distinct
primes or n is a prime power.
Proof. We know that

W (G) =
1

2

∑
u∈V (G)

d(u|G)

=
1

2

∑
u∈V (G)

 ∑
v∈V (G)

d(u, v)


=

1

2

∑
u∈V (G)

[∑
u∼v

d(u, v) +
∑
u≁v

d(u, v)

]

=
1

2

 ∑
u∈V (G)

(
∑
u∼v

d(u, v)) +
∑

u∈V (G)

(
∑
u≁v

d(u, v))

 .

Now,
∑

u∼v d(u, v)) = deg(u) = quu, and so
∑

u∈V (G)(
∑

u∼v d(u, v)) = tr(Q(G)) =∑m
i=1 λi, m is the order of Q(G). Thus,

W (G) =
1

2

 m∑
i=1

λi +
∑

u∈V (G)

(
∑
u≁v

d(u, v))

 . (4)

By Lemma 3.2, diam(M(Γ(Zn))) = 1 if and only if n is a prime power.
Thus, every vertices are mutually adjacent in M(Γ(Zpt)). Hence, by Equation
(4), W (M(Γ(Zpt))) =

1
2
[
∑m

i=1 λi].
Suppose that n ̸= pq and n ̸= pt, p and q are distinct primes. Therefore, by

Lemma 3.2, diam(M(Γ(Zn))) = 2. Thus, there exist vi and vj such that d(vi, vj) =
2 and qvivj = 0 in Q(M(Γ(Zn))). Therefore, by Equation (4), we get

W (M(Γ(Zn))) =
1

2

 m∑
i=1

λi +
∑

u∈V (M(Γ(Zn)))

(
∑
u≁v

2)

 .

In [6], Knor et al. have defined the Wiener index for disconnected graphG as the
total of Wiener index of its connected components. HereM(Γ(Zpq)) = Kϕ(p)∪Kϕ(q)

and it imply that W (M(Γ(Zpq))) = W (Kϕ(p)) + W (Kϕ(q)) =
∑

λi∈σQ(Kϕ(p))
λi +∑

λi∈σQ(Kϕ(q))
λi. It is clear that σQ(M(Γ(Zpq))) = σQ(Kϕ(p)) ∪ σQ(Kϕ(q)). Hence,

the result.
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